
PLEASE ANSWER ALL QUESTIONS.
PLEASE EXPLAIN YOUR ANSWERS.

1. (a) Denote the normal-form game below by G. Solve G by iterated elimination of
strictly dominated strategies. Explain briefly each step (1 sentence).

Player 1

Player 2
t1 t2 t3

s1 4, 8 6, 10 7, 6
s2 8, 4 4, 2 8, 0
s3 6, 7 12, 2 5, 4
s4 2, 8 9, 9 4, 10

Solution: s4 is dominated by s3. After eliminating s4, then t3 is dominated
by t1. After eliminating t3, then s1 is dominated by s3. After eliminating
s1, then t2 is dominated by t1. After eliminating t2, then s3 is dominated
by s2. Solution: (s2, t1).

(b) Suppose we repeat the stage game G twice. Denote the resulting game by
G(2). Find the set of pure-strategy Subgame-perfect Nash Equilibria of G(2).
Be careful to write out the equilibrium strategies.

Solution: Since there is a unique outcome of the iterated elimination of
strictly dominated strategies, this is the unique NE of G. Hence, it must
be played in every subgame of the finitely repeated game. SPNE =
{(play (s2, t1) in every subgame)}.

(c) Consider now the infinitely repeated game with discount factor δ < 1. Denote
this game by G(δ). Is it possible to find a Subgame-perfect Nash Equilibrium
of G(δ), for at least some values of δ < 1, in which the average payoff of both
players is strictly higher than their payoff in every Nash Equilibrium of G (i.e.
of the 1-period game seen in part (a))? If so, find such an equilibrium. If
not, argue why it does not exist. If you found such an equilibrium, be careful
to argue why it is subgame perfect, and to show that neither player has an
incentive to deviate from his equilibrium strategy.

Solution: Yes it is possible to find such a SPNE.
In the unique NE of the 1-period game, the players earn payoffs (8, 4). One
way they can both get a strictly higher payoff is if they play (s4, t2) in
every period on the equilibrium path. We proceed by looking for a trigger
strategy to support this, i.e. a strategy where (s4, t2) is played on the
equilibrium path, and any deviation leads to (s2, t1) being played forever.
The trigger strategy is always optimal off the equilibrium path, since a
stage-game NE is played each round. To show optimality on the equilibrium
path, we observe that the problem is not symmetric, so we need to consider
both players. For this solution, we use the definition of average payoffs

Page 2



from the lectures, ie. (1 − δ)∑ δt−1ut. Consider player 1. Playing s4 on
the equilibrium path yields average payoff 9. The best deviation on the
equilibrium path is to play s3 which yields 12 in the deviation round, and
then 8 ever after. This gives an average payoff of 12(1 − δ) + δ8. It is
optimal not to deviate from the equilibrium strategy if

9 ≥ 12(1− δ) + 8δ.

We can solve this for δ ≥ 3/4. Similarly, for player 2 not to deviate, we
must have

9 ≥ 10(1− δ) + 4δ.

This can be solved for δ ≥ 1/6. Taking the largest of these two values,
the trigger strategy with (s4, t2) on the equilibrium path and (s2, t1) off the
equilibrium path exists for δ ≥ 3/4, thus supporting average payoffs of 9
for both players.

2. Consider the extensive-form game given by the following game tree (the first payoff
is that of player 1, the second payoff that of player 2):

(6, 2)

L

(3, 3)

R

1

2

1
l

(1, 1)

L′

(4, 4)

R′

1
r

A

(5, 5)

l′

(3, 2)

r′

2
B

Figure 1

(a) How many proper subgames are there (excluding the game itself)? What are
the strategy sets of the players?

Solution: 4 proper subgames. S1 = {A,B} × {L,R} × {L′, R′}. S2 =
{l, r} × {l′, r′}.

(b) Find all (pure strategy) Subgame-perfect Nash Equilibria.

Solution: Since this is a game of perfect and complete information, we
can solve it by backward induction to get SPNE = {(B,L,R′), (r, l′)}.
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(c) Suppose now that player 1 does not observe the move of player 2, in situations
where player 1 is called upon to move for a second time. That is to say, if
player 1 chooses A, he does not observe whether player 2 then chooses l or r.
i. Draw the resulting game tree.
ii. Is this a game of perfect or imperfect information? How many proper

subgames are there (excluding the game itself)? What are the strategy
sets of the players?

iii. Show that there is a Subgame-Perfect Nash Equilibrium where player 1
has payoff 6. Briefly discuss why player 1 benefits from not being able to
observe player 2’s action (max. 3 sentences).

Solution: See Figure 2 for game tree. The game is of imperfect informa-
tion. There are 2 proper subgames. Player 2’s strategy set is as before,
but now S1 = {A,B} × {L,R}. The subgame starting at player 2’s choice
between l and r can be written as.

Player 1

Player 2
l r

L 6, 2 1, 1
R 3, 3 4, 4

Thus, there are two NE of the subgame. We are looking for a SPNE with
payoff 6 to player 1, so we take the NE (L, l). The right-hand side subgame
is the same as before, with player 2 playing l′. Thus, player 1 has payoff 6
from playing A and payoff 5 from playing B. Therefore, ((A,L), (l, l′)) is a
SPNE and yields equilibrium payoff 6 to player 1. The unobservability of
player 2’s action implies that player 1 can credibly ‘commit’ to playing L
if he believes that player 2 plays l. In this case, even if player 2 ‘deviates’
and plays r, player 1 cannot observe this and will continue to play L. But
this, in turn, makes it optimal for player 2 to play l.

3. Two tech entrepreneurs have made a gazillion dollar through a new app and need
to decide how to allocate the gains. If they can’t agree, nobody gets anything. Let
x1 and x2 be the amounts that entrepreneur 1 and 2 get. Then their utilities are:

u1(x1) = x1

u2(x2) = 2√x2.

Find the Nash Bargaining Solution. What are the allocations?

Solution: We have x1 = v1 and x2 = v2
2/4. Hence U = {(v1, v2)|v1, v2 ≥

0, v1 + v2
2/4 ≤ 1}. The Nash product becomes v1v2 = (1 − v2

2/4)v2, where
the equality comes from the usual efficiency restriction. First-order condition:
1 − 3v2

2/4 = 0. This gives v∗2 = 2√
3 . Then v∗1 = 1 − ( 2√

3)2/4 = 2
3 . The

corresponding allocations are x∗1 = 2
3 and x∗2 = 1

3 .
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4. Suppose we are in a setting similar to the common value auction seen in class. There
are two bidders, i = 1, 2. A single object is being sold in a first-price auction.
Each bidder receives a uniformly distributed signal: for i = 1, 2,

si ∼ u(0, 1).

Suppose that s1 and s2 are independent. The bidders’ valuations depend on both
signals, and are given by

v1 = 3
4s1 + 1

4s2,

v2 = 3
4s2 + 1

4s1.

Thus, the valuation of each bidder is 3/4 times his own signal plus 1/4 times his
competitor’s signal.

(a) What is the expected value of the object to the bidders before they enter the
auction?

Solution: Since both s1 and s2 have expectation 1/2, the unconditional
expected value is 1/2. Conditional on his own signal, the expected value of
bidder i is

3
4si + 1

4E(sj) = 3
4si + 1

8 .

(b) Suppose the two bidders follow a symmetric linear strategy βi(si) = asi, where
a > 0 is a positive constant. Conditional on s1 and on winning the auction,
what is player 1’s expected value of the object? Explain why this is different
to your answer in (a).

Solution: If both players use the symmetric linear strategy, player 1’s
expected value of the object conditional on s1 and on winning is

3
4s1 + 1

4E(s2|s2 ≤ s1) = 3
4s1 + 1

4
s1

2 = 7
8s1 <

3
4si + 1

8 .

The reason is the ‘winner’s curse’.

(c) Show that there is an equilibrium with strategies of the form βi(·), as seen in
part (b). Explicitly solve for these equilibrium strategies i.e. find a.

Solution: Since the problem is symmetric, we can focus on player 1. His
expected profit from bidding b when his signal is s1 is

Pr(as2 ≤ b) ·
[3
4s1 + 1

4E(s2|as2 ≤ b)− b
]

= b

a

[
3
4s1 + 1

4
b

2a − b
]
.
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The first-order condition with respect to b yields

1
a

[
3
4s1 + 21

4
b

2a − 2b
]

= 0.

This can be solved for b = 3a
8a−1s1. The second-order condition is easy to

check. So, matching coefficients we have a = 3a
8a−1 which has solutions 0

and 1/2. Since we have assumed a > 0, then we are left with the unique
solution a = 1/2.
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